|
发表于 2010-11-25 18:50:15
|
显示全部楼层
FSCQ1265RT
4 ^0 n! {' N. x) a1 整机参数定义
, r S4 x4 ]* wFSCQ1265RT适用于大屏幕CRT彩电,宽电源交流输入电压为85~265Vrms,最大输出功率P0=140W,最大峰值电流IP-P=7A;效率为80%~83%;对于上述输出功率,整流后选用330~470μF/ 400V的电容。 6 j3 N: E; J6 T' q
2 MOSFET工作电压VDS及共振电路 + ?$ _# [3 A% |! |- c
所示为开关管工作波形,其电压为VDSnom=VDCmax+VRO。开关MOSFET的耐压被用来决定反激电压VRO的值,在其不变的前提下,反激电压设置得越高越好。需要说的是,反激电压是由开关变压器的原、副边匝数比和输出电压来决定的,它是一个不随输入电压变化的量。$图2 开关管漏极波形$ X/ h. M% O3 `
例如,该开关MOSFET的耐压为650V,则VDSnom电压不要超过开关MOSFET耐压的75%~85%。选择VRO=125V,则在VLinemax=265VAC时,VDSnom=500V,留150V的余量给漏感电压。在应用中可视电路情况增加消尖峰吸收电路
" G# b* e. h- F- [在MOSFET关断时,VDS的上升沿是产生开关电源噪声的主要原因。可在MOSFET的漏-源极之间并联一个共振电容来降低VDS的上升斜率,以期降低噪声。此共振电容的增加也降低了MOSFET 在关断时发生的开关损耗。因此,漏-源极间的共振电容在MOSFET的关断时起了降低噪声和开关损耗两个作用。; D$ X( x3 e2 P/ [0 {7 M
在MOSFET的关断期间,共振电容会被充电至VDC+VRO。而在MOSFET导通之前,共振电容将和变压器的原边电感发生共振,VDS将从起始的电压VDC+VRO,经半个共振周期后降为VDC-VRO。准谐振电源利用控制器控制MOSFET在VDS的最低点导通,此时的导通损耗达到最小。共振电容的选择非常重要,不合适的共振电容在MOSFET导通时的放电将导致很大的MOSFET导通损耗,使散热器温度急剧增高。, j& q4 L) L) t1 |$ ~$ r
3 起动电阻和辅助电源Vcc+ R* t, p0 u9 }9 [
开机启动电阻在开机瞬间提供给控制电路电源电压,保证控制电路能正常工作。当Vcc脚电压升到15V时,电源芯片FSCQ1265的内部控制电路开始工作,芯片内的MOSFET开始了正常的导通和截止。
6 m% r V! C' T在正常负载时,Vcc的工作电压设定为18V。当Vcc脚的电压降低至9V时,芯片内部电路和MOSFET停止工作。
7 [- G; s( d- `- c. B4 同步电路
* z% i# C% G& A" {; e同步电压Vsync取自变压器辅组绕组,它和漏极电压对应关系如图3所示。其中,同步电压Vsyncpk典型值设置为8~10V,它要小于OVP(12V)电压3~4V,超过12V就会产生过压保护。
: n& l( p( \7 t1 n- {: b( jFSCQ1265RT采用准谐振转换工作方式,电源的频率是随着输入电压和负载的变化而改变的。负载变轻时,开关频率升高。当升到90kHz时,控制电路会使MOSFET在第二个同步谷点导通(见图4),这样会使振荡频率又降了下来,限制电源在轻负载时振荡频率的上升。在负载加重时,开关频率降低,当降低到45kHz时间,进入准谐振工作状态,MOSFET在第一个谷点(VDC-VRO)导通。4 z& v4 T7 [; e3 c R! |* `9 J
' 反馈控制电路9 d2 e: c" c0 g. M
FSCQ1265RT采用电流方式控制,反馈电路保证B+稳定输出。其内置前沿消隐电路(LEB),防止PWM控制器误工作。
5 E# C5 _7 _2 k5 b/ d4 N- X% r正常工作时,当由于某种原因造成B+电压升高后,通过电阻分压到R极的电压也升高。R极电压的升高引起C极电流的增大,即光耦次级(1、2脚)电流增大。这样,误差取样放大电路将B+电压的变化转变为光耦电流的变化。因此,光耦初级(3、4脚)的电流增大,电源芯片FB脚电压降低。芯片内部与之对应的比较器上的电压降低,比较器另一个脚接到MOSFET的另一个源极取样电阻Rsense上。因此,当FB脚电压降低即意味着开关管漏极电流的降低,即开关管提前截止,从而使得B+电压降低,反之亦然。 |
|